The equation ax2+bx+c=0,bx2+cx+a=0 have a common root then a3+b3+c3abc
We have,
ax2+bx+c=0 and bx2+cx+a=0 have a common root
Then,
ax2+bx+c=bx2+cx+a=0
If put x=1 then,
a+b+c=a+b+c=0
So,
a3+b3+c33abc=a3+b3+c3+3abc−3abc3abc
Using formula,
a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)
Then,
a3+b3+c33abc=a3+b3+c3−3abc3abc+3abc3abc
=(a+b+c)(a2+b2+c2−ab−bc−ca)3abc+3
=03abc+3
=3
Hence, this is the answer.