The equation cos2x+asinx=2a−7 possesses a solution if
cos2x=1−2sin2x
Hence
1−2sin2x+asin(x)=2a−7
Or
2sin2(x)−asin(x)+(2a−8)=0
Now
sin(x)=a±√a2−8(2a−8)4
Or
sin(x)=a±√a2−16a+644
Hence
sin(x)=a±(a−8)4
Now
|sin(x)|<1.
Hence
sin(x)=2a−84
=a−42.
Now
−1≤sin(x)≤1.
Or
−1≤a−42≤1
Or
−2≤a−4≤2
Or
2≤a≤6