The correct option is A no real roots
Given equation is: esinx−e−sinx−4=0
Put esin x=t in the given equation, we get
t−1t−4=0
t2−4t−1=0
⇒t=4±√16+42=4±√202=4±2√52=2±√5
⇒esinx=2±√5 (∵ t=esinx)
⇒esinx=2−√5 and esinx=2+√5
⇒esinx=2−√5<0 and sinx=ln(2+√5)>1
Thus, rejected,
Hence given equation has no solution.
∴ The equation has no real roots.