The correct option is B k≠1
Let z=x+iy
z1=x1+iy1
z2=x2+iy2
Now,
∣∣∣(x−x1)+i(y−y1)(x−x2)+i(y−y2)∣∣∣=k
⇒(x−x1)2+(y−y1)2=k2{(x−x2)2+(y−y2)2}
⇒x2(1−k2)+y2(1−k2)−2xx1−2yy1+x12−x22k2+y12−y22k2+2k2xx2+2k2yy2
⇒x2(1−k2)+y2(1−k2)−2x(x1−k2x2)−2y(y1−k2y2)+x12+y12−k2x22−k2y22=0
For circle, 1−k2≠0
k2≠1 {k is positive}
k≠1