The equation |z+i|−|z−i|=k represents a hyperbola, if
A
k∈(−2,2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
k∈(−2,0)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
k∈{0,2}
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
k∈{−2,2}
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ak∈(−2,2) Let z=x+iy Therefore |z−i|+|z+i|=k
√x2+(y−1)2+√x2+(y+1)2=k √x2+(y−1)2=k−√x2+(y+1)2 x2+(y−1)2=k2+x2+(y+1)2−2k√x2+(y+1)2 2k√x2+(y+1)2=k2+(y+1)2−(y−1)2 2k√x2+(y+1)2=k2+4y 4k2(x2+(y+1)2)=k4+16y2+8k2y 4k2x2+4k2y2+4k2y+4k2=k4+16y2+8k2y 4k2x2+y2(4k2−16)−4k2y+4k2−k4=0 Therefore it represents a hyperbola if 4k2−16<0 Or 4k2<16 k2<4 |k|<2 −2<k<2