The equation normal to the curve x2/3+y2/3=a2/3 at the point (a,0) is-
We have,
x23+y23=a23
Then,
ddx(x23+y23)=ddx(a23)
23x−13+23y−13dydx=0
x−13+y−13dydx=0
dydx=(−xy)−13
dydx=(−yx)13
At point (a,0)
(dydx)(a,0)=(−yx)13(a,0)
(dydx)(a,0)=(−0a)13
(dydx)(a,0)=0
Equation of normal is
y−y1=−1(dydx)(a,0)(x−x1)
y−y1=10(x−x1)
Equation of normal at point (a,0) and we get,
y−0=10(x−a)
x−a=0
x=a
Hence, this is the answer.