The correct options are
A x2+y2−4x−4y+7=0 B x2+y2−2x−2y+1=0 General equation of a circle is
(x−h)2+(y−k)2=r2
Given: The circle passes through the points (1,2) and (2,1) and radius is 1 units.So, we will put the value of (x,y)=(1,2) and (2,1)
(1−h)2+(2−k)2=12 ......(1)
(2−h)2+(1−k)2=12 ......(2)
⇒(1−h)2+(2−k)2=(2−h)2+(1−k)2 from (1) and (2)
⇒1+h2−2h+4+k2−4k=4+h2−4h+1+k2−2k
⇒−2h−4k=−4h−2k
⇒−2h−4k+4h+2k=0
⇒2h−2k=0
∴h=k
Put the value of h in (1) we get
(1−h)2+(2−h)2=12
⇒1+h2−2h+4+h2−4h=1
⇒2h2−6h+4=0
⇒h2−3h+2=0
⇒h2−2h−h+2=0
⇒h(h−2)−1(h−2)=0
⇒(h−2)(h−1)=0
∴h=1,2
⇒k=1,2 since h=k
For (h,k)=(1,1)
(x−1)2+(y−1)2=1 is the general equation of a circle
or x2+1−2x+y2+1−2y=1
or x2+y2−2x−2y+1=0
For (h,k)=(2,2)
(x−2)2+(y−2)2=1 is the general equation of a circle
or x2+4−4x+y2+4−4y=1
or x2+y2−4x−4y+7=0
Hence the equations x2+y2−2x−2y+1=0 and x2+y2−4x−4y+7=0 represent the required equation of circle.