The correct option is A x2+y2−8x−2y+8=0
Given, 3x+4y−1=0 is a tangent to a circle with centre (4,1) then r is perpendicular distance of (4,1) from 3x+4y−1=0.
∴r=∣∣∣12+4−15∣∣∣
∴r=∣∣∣155∣∣∣=3
So, equation of circle having centre at (4,1) and radius 3 is (x−4)2+(y−1)2=9
⇒ x2+y2−8x−2y+8=0