The correct option is D x−11=y+22=z−31
Given lines :
L1:x−21=y−31=z−40 and L2:x−10=y−4−1=z−5−1
D.R′s of L1=(1,1,0)
⇒D.C′s of L1=(1√2,1√2,0) and
D.R′s of L2=(0,−1,−1)
⇒D.C′s of L2=(0,−1√2,−1√2)
So, D.R′s of angular bisector is (l1±l2,m1±m2,n1±n2)=(1√2,0,−1√2)
or (1√2,2√2,1√2)
⇒(1,0,−1) or (1,2,1)
So, equation of required lines can be :
x−11=y+20=z−3−1 or x−11=y+22=z−31