The correct option is D 23x−13y+32z+45=0
Given planes 2x−y+2z+3=0,3x−2y+6z+8=0
Equation of the plane bisecting the two planes a1x+b1y+c1z+d1=0 and a2x+b2y+c2z+d2=0 is obtained by
⇒a1x+b1y+c1z+d1√a21+b21+c21=±a2x+b2y+c2z+d2√a22+b22+c22
⇒2x−y+2z+3√4+1+4=±3x−2y+6z+8√9+4+36
⇒2x−y+2z+33=±3x−2y+6z+87
Case I:
7(2x−y+2z+3)=3(3x−2y+6z+8)
We get: : 5x−y−4z−3=0
Case II:
7(2x−y+2z+3)=−3(3x−2y+6z+8)
We get: 23x−13y+32z+45=0