Wave equation y(x,t)=0.05sin[π2(10x−40t)−π4]
So, y(x,t)=0.05sin[(5πx−20πt)−π4]
Comparing with y(x,t)=Asin[kx−wt+ϕ]
We get, w=20π k=5π A=0.05 m
Wavelength λ=2πk=2π5π=0.4 m
Frequency f=w2π=20π2π=10 Hz
Wave velocity v=fλ=10×0.4=4 m/s
Particle velocity Vp=dydt=0.05×(−20π)cos[5πx−20πt−π4]
At x=0.5 m,t=0.05 s, Vp=0.05×(−20π)cos[5π(0.5)−20π(0.05)−π4]
Or, Vp=−20π×0.05cos(5π4)=−20π×0.05×(−1√2)=2.22 m/s
Particle acceleration ap=dVpdt=0.05×(−20π)(−20π)(−sin[5πx−20πt−π4])
At x=0.5 m,t=0.05 s, ap=−0.05×(20π)2sin[5π(0.5)−20π(0.05)−π4]
Or,
ap=−(20π)2×0.05sin(5π4)=−(20π)2×0.05×(−1√2)=139.6 m/s2