The correct option is D 3x−5√2+1=3y−8√2−2=3z−13−1−√2
Given lines : L1:x−21=y−31=4−z1=t
⇒(x,y,z)=(t+2,t+3,4−t)
and L2:1−x1=y−42=z−51=s
⇒(x,y,z)=(1−s,2s+4,s+5)
For point of intesection :
t+2=1−s,t+3=2s+4,4−t=s+5
on sloving : s=−23,t=−13
So, point of intersection is : (53,83,133)
Now, D.C′s of L1=(1√3,1√3,−1√3) and
D.C′s of L2=(−1√6,2√6,1√6)
So, D.R′s of angular bisector =(l1±l2,m1±m2,n1±n2)
i.e.(√2−1√6,√2+2√6,1−√2√6) or (√2+1√6,√2−2√6,−√2−1√6)
⇒D.R,sof angular bisector is : (√2−1,√2+2,1−√2) or (√2+1,√2−2,−√2−1)
So, equation is: x−53√2−1=y−83√2+2=z−1331−√2 or
x−53√2+1=y−83√2−2=z−133−1−√2
⇒3x−5√2−1=3y−82+√2=3z−131−√2 or 3x−5√2+1=3y−8√2−2=3z−13−1−√2