The correct option is A y=m(x−1)+3√1+m2−2
Centre and radius of the given circle is C(1,−2) and √1+4+4=3 respectively.
Let y=mx+c be the tangent to the circle. Thus distance of line from centre of the circle and radius will be equal.
⇒∣∣∣m+c+2√1+m2∣∣∣=r=3⇒c=±3√1+m2−(m+2)
Hence required tangent is , y=mx±3√1+m2−(m+2)