The equation of chord joining 2 point P(α) and Q(β) in a hyperbola x2a2 − y2b2= 1 is xa.cos (α−β2) − yb.sin (α+β2) = cos [α+β2].
True
The points joined by the chord are Pa sec α,b tan α) and Q(a sec β,b tan β)
∴ equation of chord is ,y − b tan α = b.(tanα−tanβ)a(secα−secβ).(x − a sec α)
ay sec α − ay sec β − ab sec α.tan α + ab.secα.tan β
ay sec α − ay sec β − ab sec β.tan α
=bx.tanα−bx.tanβ + ab secα tan β
Multiplying throughout by cosα.cosβab
yb.cosβ−yb.cosα+xa.cosα.sinβ−xa.cosβ.sinα
=sinβ−sinα
xa.sin(β−α)+yb (−) 2.sin(α+β2).sin(α−β2)
=2.cosα+β2.sin[β−α2]
xa.2sin(β−α2)cos(β−α2)−yb.2sin(α+β2).sin(α−β2)
=2cosα+β2.sin(β−α2)
Dividing by 2 sin (β−α2)
xa.cos(β−α2)−yb.sinα+β2=cosα+β2
Hence the given statement is true