The correct option is
A 13(x2+y2)−48x+5y+27=0Let the equation of the circle be
x2+y2+2gx+2fy+c=0 ------ (i)
since circle passes through (1,−1)
1+1+2g−2f+c=0
g−f+(c2+1)=0 ---- (ii)
Also circle passes through (3,0)
9+0+6g+c=0
g=−(c+9)6
Equation of tangent to the circle at point (3,0) is
x×3+y×0+g(x+3)+f(y+0)+c=0
(3+g)x+fy+3g+c=0
but equation of tangent is given as 6x+y−18=0
Therefore, 3+g6=f1=−183g+c
3+g6=f and f=−183g+c
f=3+g6=16[3−(c+9)6]
=136[9−c]
putting the values of f and g in (ii)
−(c+9)6−(9−c)36+c2+1=0
c=2713
therefore, g=−(c+9)6=−24
f=136(9−c)=526
putting the values of f,g,c in equation (i),
x2+y2+2gx+2fy+c=0
We get,
13(x2+y2)−48x+5y+27=0
Hence the required equation of circle,
13(x2+y2)−48x+5y+27=0