The correct option is A 3x2−y2=48
Let equation of hyperbola be
x2a2−y2b2=1 ......(i)
Given, foci, (±8,0)=(±ae,0)
⇒ae=8 .......(ii)
and length of latusrectum =2b2a
∴24=2b2a
⇒b2=12a ........(iii)
∴ From equation (ii),
a2e2=64
⇒a2(a2+b2a2)=64
⇒a2+b2=64
⇒a2+12a=64
⇒a2+12a−64=0
⇒a2+16a−4a−64=0
⇒a(a+16)−4(a+16)=0
⇒(a+16)(a−4)=0
⇒a=4 [∵ a cannot be negative]
On putting a=4 in equation (iii), we get
b2=12×4⇒b2=48
∴ From equation (i),
x216−y248=1
⇒3x2−y2=48