The correct option is
B x=λ2glog cos h(gtλ)We have dvdt=g−kv2Now taking k=gλ2 for convenience
dvdt=g−gλ2v2=gλ2(λ2−v2)
This is a differential equation of variable separable type.
∴dvλ2−v2=gλ2=gλ2dt
By integration, 12λlog(λ+nλ−v)=gλ2t+c
∴1λtan.12log(1+v/λ1−v/λ)=gλ2t+C
Since tanh−1x=12log(1+x1−x)
1λtanh−1vλ=gλ2t+c
But by data, when t=0,v=0 ∴c=0
∴1λtanh−1vλ=gλ2t ∴tanh−1vλ=gtλ
v=λtanh(gtλ)
But v=dxdt, ∴dxdt=λtanh(gtλ)+C. ...(1)
But by data, when t=0,x=0 ∴c=0
∴x=λ2glogcosh(gtλ) ....(2)
Thus, the velocity of the body is given by (1) and the distance travelled is given by (2).