The equation of normal to a hyperbola x2a2−y2b2=1 at a point with parameter θ is
axcosθ−bycotθ=a2+b2
The given equation of hyperbola is,
x2a2−y2b2=1 ............(1)
The slope of the curve at a point is given by dydx.
Differentiating (1) with respect to x
2xa2−2yb2.dydx=0
dydx=xb2ya2
∴ slope of normal =−ya2xb2
Slope of normal at (a secθ,b tanθ))
=−b tan θ.a2a sec θ.b2
=−absin θ
∴ Equation of normal is,
y−b tan θ=−ab.sin θ(x−a sec θ)
by−b2tan θ=−ax.sinθ+a2.tanθ
by+ax sin θ=tanθ(a2+b2)
ax.cosθ+by cot θ=a2+b2
Hence given equation is incorrect.