The correct option is D x=y
To get the slope of x23+y23=a23
We differentiate w.r.to x
∴23x−13+23y−13dydx=0
∴dydx=−⎛⎜
⎜
⎜⎝x−13y23⎞⎟
⎟
⎟⎠
∴dydx=−(yx)13
∴ Slope of tangent at point
P(a2√2,a2√2)
∴ Slope m=(dydx)a2√2,a2√2
∴m=(dydx)a2√2,a2√2−⎛⎜
⎜
⎜⎝a2√2a2√2⎞⎟
⎟
⎟⎠13
=−(1)13=−1
Hence slope of tangent m=−1
∴ Slope of normal =1
∴ we get equation of normal using equation y−y1=m(x−x1)
∴y−a2√2=(1)(x−a2√2)
∴y−a2√2=x−a2√2
∴ y=x