The correct option is D 4x−2y+1=0
12x2−10xy+2y2=0
⇒(6x−2y)(2x−y)=0
So, required equations will be of the form
6x−2y+λ1=0 & 2x−y+λ2=0
Now,
(6x−2y+λ1)(2x−y+λ2)=12x2−10xy+2y2+11x−5y+2
By comparing coefficients,
6λ2+2λ1=112λ2+λ1=5⇒λ1=4 and λ2=12∴line equations are3x−y+2=0 and 4x−2y+1=0