wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The equation of plane whose perpendicular distance from origin is 17 units and normal vector to plane is 2^i3^j2^k, is

A
2x3y2z=17
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2x3y2z=17
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
2x+3y2z=17
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2x3y+2z=17
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 2x3y2z=17
Equation of plane in normal form : r^n=p
where p= perpendicular distance from origin, ^n is unit vector of normal to the plane.
^n=2^i3^j2^k17
So, equation of plane is :
(x^i+y^j+z^k)(2^i3^j2^k17)=172x3y2z=17

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Defining Conics
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon