The equation of tangent to the circle x2+y2+2gx+2fy+c=0 at its point (x1,y1) is given by xx1+yy1+g(x+x1)+f(y+y1)+c=0
True
If we know the slope of the tangent , we can find the equation of tangent at (x1,y1)
Tangent and the radius CP are perpendicular to each other.
⇒Slope of tangent ×slope of CP=−1
⇒ slope of tangent =−1slope of CP
Slope of CP =y1+fx1+g
⇒slope of tangent=(x1+g)y1+f
We can now write the equation of tangent (y−y1)=x1+gy1+f(x−x1)
⇒(y−y1)(y1+f)=(x1+g)(x−x1)
⇒(y−y1)(y1+f)+(x1+g)(x−x1)=0
⇒y.xx1+yy1+fy−fy1+xg−x1g−x21−y21=0
⇒xx1+yy1+xg+fy=x21−y21fg1+x1g ................(1)
⇒x21−y21+2gx1+2fg1+c=0
⇒x21−y21+gx1+fy1=−gx1−fy1−c
(1),(2) ⇒xx1+yy1+xg+fy=−gx1−fy1−c
⇒xx1+yy1+(x+x1)g+(y+y1)f+c=0
⇒ the given statement is correct.