The correct option is C √(23)
Given−P(x1,y1)=(2,−1)isthevetexofanequilateraltriangle.Theequationofitsbaseisx+y=2⟹x+y−2=0.Tofindout−thesideofthegivenequilateraltriangle=?Solution−Thepependiculardistaceofthevertexfromthebaseofatriangleisitsheight.Foranequilateraltriangleofsidea,theheighth=√32a⟹a=2h√3.Nowweapplytheformulap=ax1+by1+c√a2+b2whenP(x1,y1)isthepointandax+by+c=0istheequationoftheline.HereP(x1,y1)=(2,−1),a=1,b=1&c=−2.∴p=h=∣∣
∣∣1×2+1×(−1)+(−2)√12+12∣∣
∣∣units=1√2units.∴Thesidea=2h√3=2×1√2√3units=√23units.