The correct option is B 7x+9y−3=0
Given lines are 4x+3y−6=0 and 5x+12y+9=0
Making the constant terms positive, we get
−4x−3y+6=0 and 5x+12y+9=0
Now,
a1a2+b1b2=−20−36=−56<0
So, the equation of acute angle bisector is
−4x−3y+6√(−4)2+(−3)2=5x+12y+9√(5)2+(12)2⇒−4x−3y+65=5x+12y+913
⇒13(−4x−3y+6)=5(5x+12y+9)⇒−52x−39y+78=25x+60y+45⇒77x+99y−33=0∴7x+9y−3=0