The correct option is
C x−y=0The equation of given circle is,
x2+y2=r2
Thus, center of circle is at origin with coordinates C(0,0) and radius is r.
Let chord AB of the circle passes through point P(1,1).
Let PA=r1 and PB=r2
Thus, as per given condition,
r2r1=√2+r√2−r
Now, As per two point form of equation of line, we can write equation of chord AB as,
y−y1=m(x−x1)
where, m = slope of chord AB.
As chord AB is passing through P(1,1) and m=tanθ, we can write
y−1=tanθ(x−1)
∴y−1=sinθcosθ(x−1)
∴cosθ(y−1)=sinθ(x−1)
∴(x−1)cosθ=(y−1)sinθ
Let (x−1)cosθ=(y−1)sinθ=´r
Lets consider equality (x−1)cosθ=´r
∴(x−1)=´rcosθ
∴x=´rcosθ+1
Similarly consider equality (y−1)=´rsinθ
∴y=´rsinθ+1
Now, in parametric form of equation of circle, we can write,
x2+y2=r2
∴(´rcosθ+1)2+(´rsinθ+1)2=r2
∴´r2cos2θ+2´rcosθ+1+´r2sin2θ+2´rsinθ+1=r2
∴´r2(sin2θ+cos2θ)+2´r(cosθ+sinθ)+2−r2=0
∴´r2+2´r(cosθ+sinθ)+2−r2=0
This is quadratic equation in ´r
a=1, b=2(cosθ+sinθ) and C=2−r2
Let r1 and r2 be two roots of this equation.
∴r1+r2=−2(cosθ+sinθ)1=−2(cosθ+sinθ) Equation (1)
similarly, ∴r1r2=ca
∴r1r2=2−r21=2−r2 Equation (2)
Now, as given in problem,
r2r1=√2+r√2−r
∴r2=(√2+r√2−r)r1 Equation (3)
Put this value in equation (1) ,we get,
r1+(√2+r√2−r)r1=−2(cosθ+sinθ)
r1(1+√2+r√2−r)=−2(cosθ+sinθ)
∴r1(2√2√2−r)=−2(cosθ+sinθ)
∴r1=−2(√2−r)(cosθ+sinθ)2√2
∴r1=−(√2−r)(cosθ+sinθ)√2
Put this value in equation (2) and equation (3), we get,
[(√2+r√2−r)][−(√2−r)(cosθ+sinθ)√2]2=2−r2
[(√2+r√2−r)]⎛⎝(√2−r)2(cosθ+sinθ)22⎞⎠=2−r2
Simplifying above equation, we get,
(√2+r)((√2−r)(cos2θ+sin2θ+2cosθsinθ)2)=2−r2
∴⎛⎜⎝((√2)2−r2)(1+sin2θ)2⎞⎟⎠=2−r2
∴(2−r2)(1+sin2θ)=2(2−r2)
∴(1+sin2θ)=2
∴sin2θ=2−1=1
∴2θ=sin−1(1)
∴2θ=900
∴θ=450
Thus, m=tan(450)
∴m=1
Thus, equation of chord AB passing through (1,1) is given by,
y−1=1(x−1)
∴y−1=x−1
∴y=x
∴x−y=0
Thus answer is option (D)