The correct option is A x2+y2+3x+y−11=0
3x+y+5=0 is a chord of circle x2+y2=16
y=−5−3x ....... (i)
Put the value of y in equation of circle, we get
x2+(−5−3x)2=16
x2+9x2+25+30x=16
10x2+30x+9=0
x=−30±√900−4(10)(9)20
x=−30±√900−36020
x=−30±√54020
x=−30±6√1520
x=−15±3√1510
y=−5−3[−15+3√1510],−5−3[−15−3√1510]
y=−5−9√1510,−5+9√1510
∴ End points of chord are [−15+3√1510,−5−9√1510],[−15−3√1510,−5+9√1510]
This chord acts as a diameter for another circle.
∴ Center = mid point of above points
=[−302×10,−102×10]=[−32,−12]
Equation of circle is :(x+32)2+(y+12)2=r2 ....... (ii)
Radius = distance between centre & [−15+3√1510,−5−9√1510]
r2=[−15+3√1510+32]2+[−5−9√1510+12]2
r2=[−15+3√15+1510]2+[−5−9√15+510]2
r2=9×15100+81×15100
r2=15100[90]=272
Put value of r2 in (ii), we get
(x+32)2+(y+12)2=272
4x2+9+12x+4y2+1+4y=54
4x2+4y2+12x+4y=44
x2+y2+3x+y−11=0