The correct option is
D x2+y2+3x−6y−40=0Pair of lines:
x2+2xy+3x+6y=0
⇒x(x+2y)+3(x+2y)=0
⇒(x+2y)(x+3)=0
⇒x+2y=0
and x+3=0
Are the two normals and their point of intersection must be the centre of the circle.
⇒x=−3
and y=−x2=32
⇒(−3,32) is the centre of required circle.
(∵x(x−4)+y(y−3)=0 is the diametric form of the circle. Hence, (0,0) and (4,3) are the diametric end points.)
⇒ Centre →(0+42,0+32)→(2,32)
radius =12(√16+9)
=52
The required circle with centre (−3,32) is just sufficient to contain the circle
x(x−4)+y(y−3)=0
∴ radius of required circle
=distance between (−3,32) and (2,32) + radius of given circle.
=√(−3−2)2+0+52
=5+52=152
∴ Equation of required circle:
⇒(x+3)2+(y−32)2=2254
⇒x2+y2+9+94+6x−3y=2254
⇒x2+y2+6x−3y+9+94−2254=0
⇒x2+y2+6x−3y+9−2164=0
⇒x2+y2+6x−3y+9−54=0
⇒x2+y2+6x−3y−45=0
∴B) Answer.