The correct option is D x2 + y2 - 8x + 12y + 27 = 0
Let P(1, -2) and the centre be C(a, b)
Centre lies on 2x - y - 14 = 0 ⇒ 2a - b - 14 = 0 ⇒ b = 2a - 14 → (1)
Circle touches the lines 4x + 3y - 23 = 0. Lets say that this point of touching is Q.
We know that,
CQ = CP = Radius of the circle.
⇒ √(a−1)2+(b+2)2 = |4a + 3b − 23|√42 + 32
⇒ √(a−1)2+(2a−14+2)2 = |4a+3(2a−14)−23|5 [From (1)]
⇒ 5√a2−2a+1+4a2−48a+144 = |10a−65| ⇒ 5√5a2−50a+145 = 5|2a−13|
⇒ 5a2 - 50a + 145 = (2a - 13)2 = 4a2 - 52a + 169
⇒ a2 + 2a - 24 = 0 ⇒ (a + 6)(a - 4) ⇒ a = 4
Case 1 : a = 4 ⇒ b = 2(4) - 14 = - 6.∴ Centre C = (4, - 6)
Radius = CP = √(4−1)2+(−6+2)2 = √9+16 = 5
The circle equation is (x−4)2+(y+6)2=52 ⇒ x2 + y2 - 8x + 12y + 27 = 0
Case 2 : a = - 6 ⇒ b = 2(- 6) - 14 = 26 ∴ Centre C = (-6, - 26)
Radius = CP = √(−6−1)2+(−26+2)2 = √49+576 = √625 = 25
The circle equation is (x+6)2+(y+26)2=252 ⇒ x2 + y2 + 12x + 52y + 87 = 0
∴ The circles are x2 + y2 - 8x + 12y + 27 = 0, x2 + y2 + 12x + 52y + 87 = 0