The correct option is
D x2+y2−4x−6y−12=0Let
C(α,β) be the centre of the circle.
Since the circle passes through the point (2,8),
∴ Radius of the circle =√(α−2)2+(β−8)2
Since the circle touches the lines 4x−3y−24=0 and 4x−3y−42=0,
∴∣∣∣4α−3β−245∣∣∣=∣∣∣4α+3β−425∣∣∣=√(α−2)2+(β−8)2 ...(1)
Solving them
4α−3β−24=±(4α+3β−42) ...(3)
∴6β=18⇒β=3 (taking positive sign)
and 8α=66⇒α=334 (taking negative sign).
Given, |α|≤8 ⇒−8≤α≤8,∴α≠334
Putting β=3 in equations (1) and (3) and equating, we get
(4α−33)2=[(α−2)2+25]
⇒16α2−264α+1089=25α2+725−100α
⇒9α2+164α−364=0
∴α=−164±√(164)2+36×36418=−164±20018=2,−1829.
But −8≤α≤8,∴a=2.
Now, (radius)2=(α−2)2+(3−8)2=(2−2)2+(3−8)2=25
Hence, the equation of the required circle is
(x−2)2+(y−3)2=25⇒x2+y2−4x−6y−12=0.