Let the equation of circle be S=(x−a)2+(y−b)2=c2
S passes through (0,0)⇒ a2+b2=c2−−−−(1)
Given tangents : x+y=3, x−y=3
Distance of tangent from centre = radius
⇒ ∣∣∣a+b−3√2∣∣∣=∣∣∣a−b−3√2∣∣∣=c
⇒ |a+b−3|2=|a−b−3|2=(c√2)2
⇒ |a+b−3|2=|a−b−3|2=2c2=2(a2+b2) from (1)
(i) |a+b−3|2=2(a2+b2)
⇒a2+b2+9+2(ab−3a−3b)=2a2+2b2
⇒a2+b2−2ab+6a+66−9=0−−−(2)
(ii) |a+b−3|2=(a−b−3)2
a2+b2+9+2ab−6b−6a=a2+b2+9−2ab+6b−6a
⇒ 4ab−12b=0
⇒ 4b(a−3)=0 ⇒ a=3, b=0
Put a=3 in (2) ⇒ 9+b2−6b+18+6b−9=0
⇒ b2+18=0
Put a=0 in (2) ⇒ b2−9+6a=0
⇒ b2+6a−9=0 ⇒ b=−3±3√2=b=−3(1+√2)
⇒ (a,b)=(−3(1±√2),0)
Equation of the circle S=(x−a)2+(y−b)2=a2
⇒ x2+a2−2ax+y2=a2 for b=0
⇒ x2−2ax+y2=0
⇒ x2+y2±6(1±√2)x=0