The correct options are
C y=x2+4
D y=−x2−4
The tangent to y2=8x is y=mx+2m ...(1)
The tangent to x2+12y2=48 is y=mx±√48m2+4 ...(2)
Comparing equation (1) and (2)
2m=±√48m2+4
4m2=48m2+4
⇒1=12m4+m2
⇒12m4+m2−1=0
⇒(4m2−1)(3m2+1)=0
(3m2+1)≠0, 4m2=1
m=±12
The equations of the tangents are
y=x2+4 and y=−x2−4