The correct option is
A y=±x±√a2−b2Hyperbola-1 is x2a2−y2b2=1 andhyperbola-2 is y2a2−x2b2=1
We write tangent at point (asecϕ,btanϕ) for hyperbola 1 is
⇒xsecϕa−ytanϕb=1..................1
Similarly at point (btanθ,asecθ) for hyperbola 2 is
ysecθa−xtanθb=1..................2
if 1 and 2 are the common tangents they should be identical.
so secθa=−tanϕb⇒secθ=−atanϕb...........................3
and −tanθb=−secϕa⇒tanθ=−bsecϕa.........................4
we know that sec2θ−tan2θ=1
Put values from 3 and 4 in above to get,
⇒a2b2tan2ϕ−b2a2sec2ϕ=1⇒a2b2−b2a2(1+tan2ϕ)=1
⇒tan2ϕ=b2a2−b2,sec2ϕ=a2a2−b2
So points of contact are (±a2√a2−b2,±b2√a2−b2),(±b2√a2−b2,±b2√a2−b2)
length of common tangent is √2(a2+b2)a2−b2
so equation of common tangent is
±x√a2−b2∓y√a2−b2=1
or x∓y=±√a2−b2