The correct option is A e2x(1−x+y)=1+x−y
We have, dydx=±(x−y)
Case 1 When dydx=(x−y)
In this case, we have
1−dvdx=v, where x−y=v⇒dvdx=1−v⇒11−vdv=dx⇒−log(1−v)=x+logc⇒(1−v)−1=cex⇒11−x+y=cex
It passes through the origin.
∴ c=1Hence, 11−x+y=ex .....(i)
Case 2 When dydx=−(x−y)=y−x
In this case, we have
dudx+1=u, where u=y−x
⇒duu−1=dx⇒log(u−1)=x+logc⇒u−1=cex⇒y−x−1=cex
It passes through the origin.
∴ c=−1Hence, y−x−1=−ex⇒x−y+1=ex
From Eqs. (i) and (ii), we obtain
x−y+11−x+y=e2x⇒ (x−y+1)=(1−x+y)e2x