wiz-icon
MyQuestionIcon
MyQuestionIcon
4
You visited us 4 times! Enjoying our articles? Unlock Full Access!
Question

The equation of the curve satisfying the differential equation y2(x2+1)=2xy1 passing through the point (0,1) and having slope of tangent at x=0 as 3 is

A
y=x2+3x+2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
y=x2+3x+1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
y=x3+3x+1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B y=x2+3x+1
Given d2ydx2(x2+1)=2xdydx
y=x2+3x+1
Slope, (dydx)x=0=(2x+3)x=02×0+33
At point x=0
y=(0)2+3×0+1
Thus this curve passes through point (0,1) and have slope of tangent at x=0 as 3
y=x2+3x+1 is the answer

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon