1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Variable Separable Method
The equation ...
Question
The equation of the curve through the point
(
1
,
0
)
, whose slope is
y
−
1
x
2
+
x
, is.-
A
(
y
−
1
)
(
x
+
1
)
+
2
x
=
0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
2
x
(
y
−
1
)
+
x
+
1
=
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x
(
y
−
1
)
(
x
+
1
)
+
2
=
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
x
(
y
+
1
)
+
y
(
x
+
1
)
+
2
=
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
A
(
y
−
1
)
(
x
+
1
)
+
2
x
=
0
Given that,
Slope of the curve
=
y
−
1
x
2
+
x
⇒
d
y
d
x
=
y
−
1
x
2
+
x
We can rewrite this as
⇒
d
y
y
−
1
=
d
x
x
2
+
x
Integrate on both sides
⇒
∫
d
y
y
−
1
=
∫
d
x
x
2
+
x
⇒
∫
d
y
y
−
1
=
∫
d
x
x
(
x
+
1
)
⇒
∫
d
y
y
−
1
=
∫
(
1
x
−
1
x
+
1
)
d
x
⇒
∫
d
y
y
−
1
=
∫
1
x
d
x
−
∫
1
x
+
1
d
x
Note that this integral is in the form of
∫
1
a
d
a
=
log
a
Applying this formula, we get
⇒
log
(
y
−
1
)
=
log
x
−
log
(
x
+
1
)
+
log
C
We know that
⇒
log
m
+
log
n
=
log
m
n
and
⇒
log
m
−
log
n
=
log
(
m
n
)
Using these formulae in the above expressions we get,
⇒
log
(
y
−
1
)
=
log
C
x
−
log
(
x
+
1
)
⇒
log
(
y
−
1
)
=
log
(
C
x
x
+
1
)
Applying Anti-log on both sides we get,
⇒
y
−
1
=
C
x
x
+
1
....
e
q
(
1
)
It is given that the curve passes through
(
1
,
0
)
Substituting these values of
x
,
y
in the above equation we get,
⇒
0
−
1
=
C
×
1
1
+
1
⇒
−
1
=
C
2
⇒
C
=
−
2
Substituting this value of
C
in
e
q
(
1
)
⇒
y
−
1
=
−
2
x
x
+
1
⇒
(
y
−
1
)
(
x
+
1
)
=
−
2
x
⇒
(
y
−
1
)
(
x
+
1
)
+
2
x
=
0
Hence, the required equation of the curve is
⇒
(
y
−
1
)
(
x
+
1
)
+
2
x
=
0
Suggest Corrections
0
Similar questions
Q.
Equation of the curve which passes through the point (1, 1) and whose D.E is
(
y
−
y
x
)
d
x
+
(
x
+
x
y
)
d
y
=
0
:
Q.
Inverse circular functions,Principal values of
s
i
n
−
1
x
,
c
o
s
−
1
x
,
t
a
n
−
1
x
.
t
a
n
−
1
x
+
t
a
n
−
1
y
=
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
<
1
π
+
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
>
1
.
If
0
<
x
<
1
, then
√
1
+
x
2
[
{
x
c
o
s
(
c
o
t
−
1
x
)
+
s
i
n
(
c
o
t
−
1
x
)
}
2
−
1
]
1
/
2
is equal to
(a)
x
√
1
+
x
2
(b)
x
(c)
x
√
1
+
x
2
(d)
√
1
+
x
2
Q.
Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:
1.
y
=
e
x
+
1
:
y
′′
−
y
=
0
2.
y
=
x
2
+
2
x
+
C
:
y
′
−
2
x
−
2
=
0
3.
y
=
cos
x
+
C
:
y
′
+
sin
x
=
0
4.
y
=
√
1
+
x
2
:
y
′
=
x
y
1
+
x
2
5.
y
=
A
x
:
x
y
=
y
(
x
≠
0
)
6.
y
=
x
sin
x
:
x
y
=
y
+
x
√
x
2
y
2
(
x
≠
0
a
n
d
x
>
y
o
r
x
<
y
)
7.
x
y
=
log
y
+
C
:
y
′
=
y
2
1
−
x
y
(
x
y
≠
1
)
8.
y
−
cos
y
=
x
:
(
y
sin
y
+
cos
y
+
x
)
y
′
=
y
9.
x
+
y
=
tan
−
1
y
:
y
2
y
′
+
y
2
+
1
=
0
10.
y
=
√
a
2
−
x
2
x
ϵ
(
−
a
,
a
)
:
x
+
y
d
y
d
x
=
0
(
y
≠
0
)
Q.
The equation of the curve through the point
(
1
,
0
)
and whose slope is
y
−
1
x
2
+
x
is
Q.
Equation of the curve passing through (1, 0) whose slope is
y
−
1
x
2
+
x
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Explore more
Variable Separable Method
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app