The equation of the directrices of the hyperbola 3x2−3y2−18x+12y+2=0 is
A
x=3±√136
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
x=3±√613
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x=6±√133
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
x=6±√313
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ax=3±√136 3x2−3y2−18x+12y+2=0 ⇒3(x2−6x)−3(y2−4y)+2=0 ⇒3(x−3)2−3(y−2)2=−2+27−12 ⇒(x−3)2−(y−2)2=133 ⇒(x−3)2(√13/3)2−(y−3)2(√13/3)2=1
Equation of directrix are x−k=±ae ⇒x−3=±13/3√13/3+13/3⇒x=3±√136