The equation of the directrix of a hyperbola is x-y+3 =0.Its ficys us(-1,1) and eccentricity 3.Find the equation of the hyperbola.
Let S(-1,1) be the focus nd P(x,y) be a point on the hyperbola Draw PM perpenicular from p on the directrix.Then,by definition.SP=ePM⇒SP2=e2PM2⇒(x−1)2+(Y−1)2=(3)2[x−y+3√11+(−1)2]2 [∵e=3]⇒x2+1+2x+y2+1−2y=9[x−y+3]22⇒2[x2+y2+2x−2y+2]=9[x−y+3]2⇒2x2+2y2+4x−4y+4=9[x29(−y)2+32+2×x×(−y)×3+2×3×x]⇒2x2+2y2+4x−4y−4=9[x2+y2+9−2xy−6y+6x]⇒2x2+2y2+4x−4y+4=9x2+9y2+81−18xy−54y+4y+81−4=0⇒7x2+7y2−18xy+50x−50y+77=0This is the required equation of the hyperbola.