The correct option is A x′y−xy′=0
Given, x2+y2=a2
On differentiating w.r.t. x, we get
2x+2ydydx=0
⇒dydx=−xy
⇒(dydx)(x′,y′)=−x′y′
Slope of tangent is −x′y′
So, Slope of normal will be −dxdy i.e. y′x′
∴ Equation of normal is
y−y′=y′x′(x−x′)
⇒x′y−y′x′=xy′−y′x′
⇒x′y−xy′=0