The correct option is
A 2x−y−7=0,2x+y−9=0Circle
eqn→x2+y2−8x−2y+12=0....(i)We have draw normal whose ordinate is =−1
So for
So here y=−1
Putting y=−1 in eqn(i)
x2+1−8x+2+12=0
x2−8x+15=0
x2−5x−3x+15=0⇒x(x−5)−3(x−5)=0
⇒(x−3)(x−5)=0
x=3,5
So points where Normal to be drawn is
(3,−1) and (5,−1)
For point (3,−1), slope of Normal =−1(dydx)(3,−1)
from (i) dydx is
differentiating eqn(i) with respect to x
2x+2ydydx−8−2dydx+0=0.....(2)
at point (3,−1), put in (2)
6−2dydx−8−2dyd=0
So slope of Normal =−1−12=2
eqn will be ⇒(y+1)=2(x−3)
⇒y+1=2x−6
⇒2x−y−7=0
For point (5,−1) slope of Normal from eqn(2)
10−2dydx−8−2dydx=0
2=4dydx⇒dydx=12
Slope of Normal =−1(dydx)(5,−1)
=−1(12)=−2
So eqn of normal
⇒(y+1)=−2(x−5)
⇒y+1=−2x+10
⇒2x+y−9=0
So eqn of Normals are ⇒(2x−y−7)=0
and 2x+y−9=0