The correct option is C x±3√2y=104
Solving the curve at x=8=23
y2=x3=29
⇒y=±24√2=±16√2
So the points are (8,±16√2)
Now the curve is, y2=x3
⇒2y×dydx=3x2
⇒(dydx)=3x22y
⇒(dydx)(8,±16√2)=3×64±2×16√2=±3√2
Thus the slope of normal is =(dydx)=∓13√2
Therefore, equation of normal is,
(y∓16√2)=∓13√2(x−8)
⇒∓3√2y±96=(x−8)
⇒x±3√2y=104
Hence, option 'B' is correct.