The correct option is C x+4y=8
Given curve is y=(1+x)2y+cos2(sin−1x)
At x=0→y=1+cos2(0)=2
Thus, the point is (0,2)
y=(1+x)2y+cos2(sin−1x)
⇒y=(1+x)2y+cos2(cos−1 √1−x2)
=(1+x)2y+(cos(cos−1 √1−x2))2
=(1+x)2y+(√1−x2)2
⇒y=(1+x)2y+1−x2
Differentiating with respect to ′x′
y′=(1+x)2y{2y1+x+ln(1+x).2y′}−2x
y′|(0,2)=4−0
Equation of normal at (0,2)is:y−2=−14(x−0)
⇒4y−8=−x
⇒x+4y=8