The given curve is
y=x+sinxcosx
Then,
y=x+22sinxcosx
y=x+12sin2x
On differentiation and we get,
dydx=1+12×2cos2x
dydx=1+cos2x
At point x=π2
dydx=1+cos2×π2
dydx=1+cosπ
dydx=1−1
dydx=0
Then,
Equation of normal
y−y1=−1dydx(x−x1)
y−y1=−10(x−x1)
0=−1(x−π2)
x−π2=0
x=π2
Hence, this is the
answer.