The correct option is A 4x+7y+11=0
Given lines 12x−5y+7=0 and 3y−4x−1=0
Now, making the constant terms positive, we get
12x−5y+7=0 and 4x−3y+1=0
Checking
a1a2+b1b2=48+15=63>0
So, the obtuse angle bisector is
12x−5y+7√(12)2+(−5)2=+4x−3y+1√(4)2+(−3)2⇒12x−5y+713=4x−3y+15⇒60x−25y+35=52x−39y+13⇒8x+14y+22=0∴4x+7y+11=0