The correct option is
D None of these
Equation of circle is given by,
S:x2+y2−2x+4y+3=0
Compare this equation with standard form of equation i.e. x2+y2+2gx+2fy+c=0, we get,
2g=−2
∴g=−1
2f=4
∴f=2
c=3
Now, tangent is passing through (6,−5). Putting these values of x and y in equation of circle, we get,
S1=(6)2+(−5)2−2(6)+4(−5)+3
∴S1=36+25−12−20+3
∴S1=32
Now, by property of tangent, if T represents equation of pair of tangents, then we can write,
S.S1=T2
∴T2=32(x2+y2−2x+4y+3) Equation (1)
Now equation of tangent is given as,
T:xx1+yy1+g(x+x1)+f(y+y1)+c=0
∴T:6x+(−5)y+(−1)(x+6)+2(y+(−5))+3=0
∴T:6x−y−x−6+2y−10+3=0
∴T:5x+y−13=0
From equation (1), we can write,
(5x+y−13)2=32(x2+y2−2x+4y+3)
∴25x2+y2+169+10xy−26y−130x=32x2+32y2−64x+128y+96
∴−7x2−31y2+10xy−66x−154y+73=0
Dividing equation by -1, we get,
∴7x2+31y2−10xy+66x+154y−73=0
Answer is option (D)