wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The equation of the parabola whose vertex is (a, 0) and the directrix has the equation x + y = 3a, is
(a) x2 + y2 + 2xy + 6ax + 10ay + 7a2 = 0
(b) x2 − 2xy + y2 + 6ax + 10ay − 7a2 = 0
(c) x2 − 2xy + y2 − 6ax + 10ay − 7a2 = 0
(d) none of these

Open in App
Solution

(b) x2 − 2xy + y2 + 6ax + 10ay − 7a2 = 0

Given:
The vertex is at (a, 0) and the directrix is the line x + y = 3a.

The slope of the line perpendicular to x + y = 3a is 1.

The axis of the parabola is perpendicular to the directrix and passes through the vertex.

∴ Equation of the axis of the parabola = y-0=1x-a (1)

Intersection point of the directrix and the axis is the intersection point of (1) and x + y = 3a.

Let the intersection point be K.

Therefore, the coordinates of K are 2a, a.

The vertex is the mid-point of the segment joining K and the focus (h, k).
a=2a+h2, 0=a+k2h=0, k=-a

Let P (x, y) be any point on the parabola whose focus is S (h, k) and the directrix is x + y = 3a.

Draw PM perpendicular to x + y = 3a.
Then, we have:
SP=PMSP2=PM2x-02+y+a2=x+y-3a22x2+y+a2=x+y-3a222x2+2y2+2a2+4ay=x2+y2+9a2+2xy-6ax-6ayx2+y2-7a2+10ay+6ax-2xy=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Straight Line
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon