The correct option is A 51x+18y+15z−3=0
Equation of given planes are P1:3x+4y−4=0,P2:6x−2y+3z+5=0
By submitting origin, in P1 and P2, we have P1(0,0)<0 and P2(0,0)>0
∴ Equation of plane of angular bisector containing origin is
⇒ax1+by1+cz1−d1√a21+b21+c21=−ax1+by1+cz1−d1√a21+b21+c21
⇒3x+4y−4√9+16+0=−6x−2y+3z+5√36+4+9
⇒3x+4y−45=−6x−2y+3z+57
⇒21x+28y−28=−(30x−10y+15z+25)
⇒51x+18y+15z−3=0