The equation of the tangent to the circle x2+y2=a2, which makes a triangle of area a2 with the coordinate axes, is
Let y=mx+r√m2+1 be a tangent to circle x2+y2=a2,C=(0,0),r=a
y=mx+a√m2+1
Taking only + sign
⟹−mxa√m2+1+ya√m2+1=1
⟹xa√m2+1−m+ya√m2+1=1
Area of xa+yb=1 with axes 12|ab|
Area=12×(a√m2+1)2|−m|=a2
a√m2+1m=±2a2
m2+1±2m=0
m=1,m=−1
Tangent equation is
y=±x±a√1+1
x±y=±a√2