The correct option is D 2x+y−3√3=0
Given that x1=y1
Therefore, x1=√9−2x21
⇒x21=9−2x21
⇒x1=±√3
since, y1>0, therefore the point is (√3,√3)
Also, y=√9−2x2
⇒y2=9−2x2
On differentiating w.r.t x, we get
2ydydx=−4x
⇒dydx=−2xy
⇒(dydx)(√3,√3)=−2
So, the required equation of tangent is
(y−√3)=−2(x−√3)
⇒2x+y−3√3=0