The correct option is C x=y=z
Given lines : L1:x1=y2=z3 and L2:x−3=y−2=z−1
⇒D.R′s of L1=(1,2,3) and
⇒D.C′s of L1=(1√14,2√14,3√14)
D.R′s of L2=(−3,−2,−1)
⇒D.C′s of L2=(−3√14,−2√14,−1√14)
We know,
equation of angle bisector is : x−x1l1±l2=y−y1m1±m2=z−z1n1±n2
Here, (x1,y1,z1)=(0,0,0)
So, bisectors are : x−2/√14=y0=z2/√14 or x4/√14=y4/√14=z4/√14
⇒x+z=y=0 OR x=y=z