The correct option is D an infinite number of complex solutions
sinz=10
⇒eiz−e−iz2i=10⇒eiz−1eiz=20i
⇒(eiz)2−20i(eiz)−1=0
⇒α2−20iα−1=0, where α=eiz
⇒α=−(−20i)±√−400+42
=20i±√−3962=20i±6i√112
or eiz=10i±3√11.i
⇒loge(eiz)=log(10i±3√11i)
⇒iz=log[i(10±3√11)]
=logi+log(10±3√11)
[∵⎡⎢⎣logeeπ2i=log1+logee(π2±2nπ)i⎤⎥⎦
⇒iz=log1+i(π2±2nπ)+log(10±3√11)
⇒iz=i(π2±2nπ)+log(1−±2√11)
⇒z=(π2±2nπ)−ilog(10π√11)
Wherer n=0,1,2...
∴sinz=10 has infinite number of complex solutions.